

High-Isolation Series-Shunt FET SPDT Switch With a Capacitor Canceling FET Parasitic Inductance

Morishige Hieda, *Member, IEEE*, Kazuhiko Nakahara, *Member, IEEE*, Kenichi Miyaguchi, *Member, IEEE*,
Hitoshi Kurusu, Yoshitada Iyama, *Member, IEEE*, Tadashi Takagi, *Member, IEEE*, and
Shuji Urasaki, *Senior Member, IEEE*

Abstract—A novel series-shunt FET narrow-band high-isolation single-pole double-throw switch, which employs series capacitors to cancel the parasitic inductances has been developed. The proposed switch can have significantly high isolation characteristics at higher frequency. The fabricated two switches have demonstrated high isolation characteristics of 28.9 dB in the 28- and 18-GHz band, respectively.

Index Terms—Microwave switches, monolithic-microwave integrated-circuit switch.

I. INTRODUCTION

SERIES-SHUNT FET single-pole double-throw (SPDT) switches are often used for low-frequency applications (1.9-GHz personal handy-phone system (PHS), etc.) because of their small size and broad bandwidth [1]–[4]. However, they do not have sufficiently high isolation because of FET parasites, especially when they operate in higher frequency range. It is desirable to obtain a high-isolation transmit/receive (T/R) switch for a T/R module. Moreover, a high-isolation switch is important for getting phase shifters with high performance of small gain ripple and low phase error. It is known that an *L*-FET configuration, which has resonant inductor *L* connected to an FET in parallel [5], can achieve high isolation at high frequency. However, its bandwidth is restricted because it uses resonance of intrinsic capacitor in an “off” FET and external inductor.

To address these problems for conventional switches, we have proposed a novel series-shunt FET SPDT switch with capacitors canceling parasitic inductor of shunt FETs. The investigation for series-shunt FET switches has shown that degradation of isolation is caused by parasitic inductance of shunt FETs at a high-frequency range. Moreover, it has been demonstrated that a capacitor connected to a shunt FET in series cancels the parasitic inductance and leads to high isolation. The Ka - and K -band series-shunt FET SPDT switches with capacitor canceling parasitic inductor of shunt FETs have been developed and both of them have achieved isolation of 28.9 dB at 28 and 18 GHz, respectively.

Manuscript received March 30, 2001; revised August 21, 2001.

M. Hieda, K. Miyaguchi, T. Tagagi, and S. Urasaki are with the Information Technology Research and Development Center, Mitsubishi Electric Corporation, Kamakura 247-8501, Japan (e-mail: hieda@isl.melco.co.jp).

K. Nakahara and Y. Iyama are with Kamakura Works, Mitsubishi Electric Corporation, Kamakura 247-8520, Japan.

H. Kurusu is with the High Frequency and Optical Semiconductor Division, Mitsubishi Electric Corporation, Itami 664-8641, Japan.

Publisher Item Identifier S 0018-9480(01)10443-6.

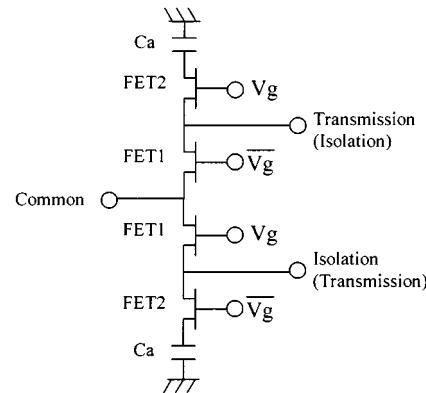
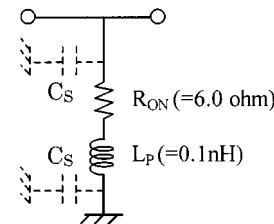



Fig. 1. Circuit scheme of a series-shunt FET SPDT switch with capacitors canceling parasitic inductor of shunt FETs.

(a)

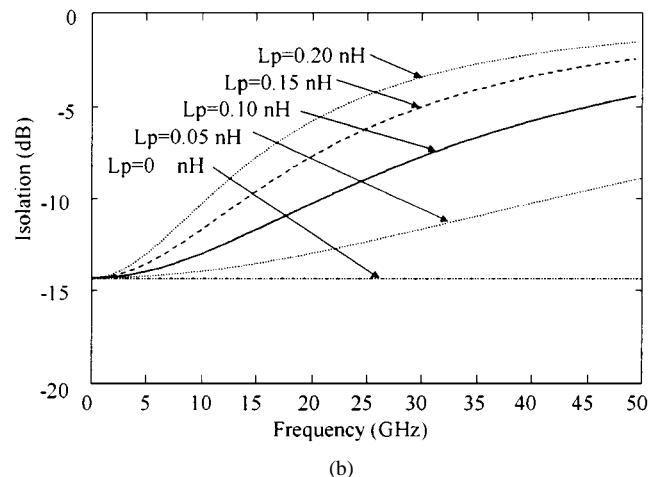


Fig. 2. (a) Simplified equivalent circuit of a shunt FET in the “off” state of the switch. (b) Calculated isolation characteristics of the shunt FET.

II. SERIES-SHUNT FET SPDT SWITCH WITH A CAPACITOR CANCELING PARASITIC INDUCTOR

Fig. 1 shows a circuit schematic of the series-shunt FET SPDT switch with capacitors (C_a) canceling parasitic inductor

Fig. 3. (a) Simplified equivalent circuit of a shunt FET with series capacitors (C_a) in the "off" state of the switch. (b) Calculated isolation characteristics.

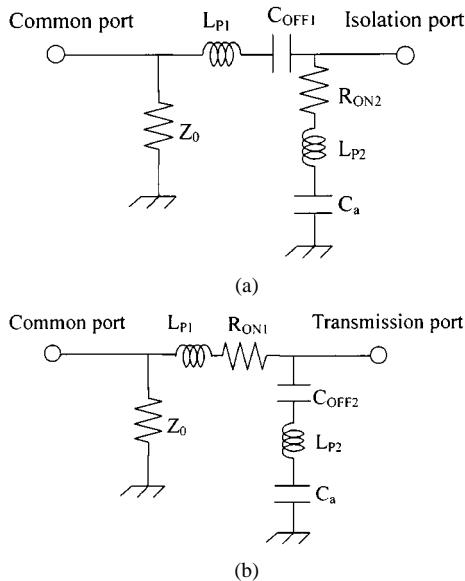


Fig. 4. Simplified equivalent circuit of: (a) isolation port and (b) transmission port of the proposed series-shunt FET SPDT switch with capacitors (C_a) canceling the parasitic inductor L_{p2} of the shunt FET.

of shunt FETs (FET2). In order to obtain high-isolation performance of the switch at high frequency, we have taken an approach to find the cause of the isolation degradation at a higher frequency.

At first, the performance of a shunt FET in the "off" state of the switch is analyzed because the isolation performance of a series-shunt FET SPDT switch highly depends on the isolation

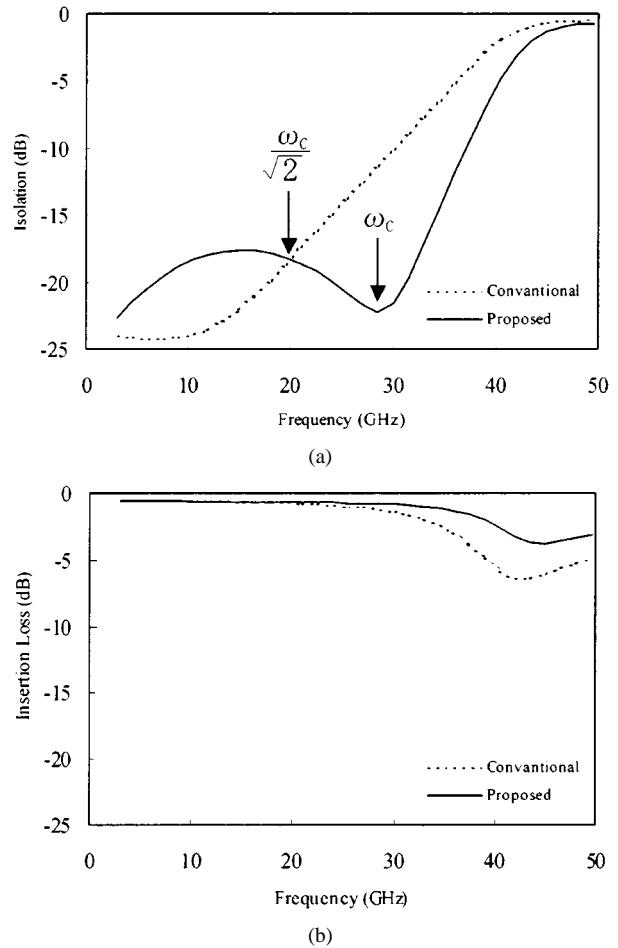


Fig. 5. Calculated: (a) isolation and (b) insertion loss of 28-GHz-band switches with and without capacitors (C_a).

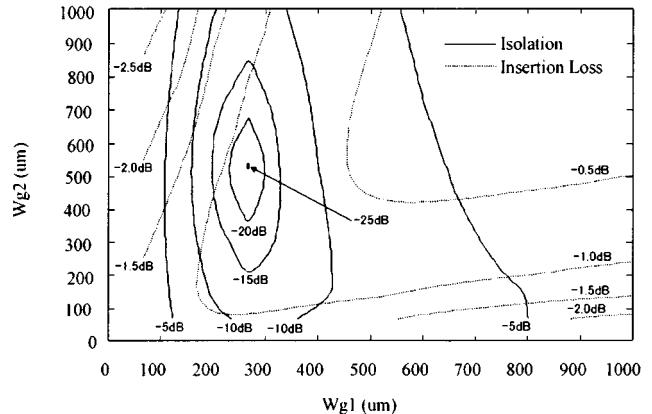


Fig. 6. Calculated contour maps for isolation and insertion loss of the proposed series-shunt FET SPDT switch with capacitors (C_a) at 28 GHz.

of a shunt FET. Fig. 2 shows a simplified equivalent circuit of a shunt FET in the "off" state of the switch and calculated isolation characteristics. Here, the FET's gatewidth is 300 μm . The value of parasitic capacitance ($C_s = 0.0096 \text{ pF}$) is neglected in the calculation. From Fig. 2, it is illustrated that degradation of isolation of a shunt FET at higher frequency is caused by the parasitic inductor (L_p) of the FET.

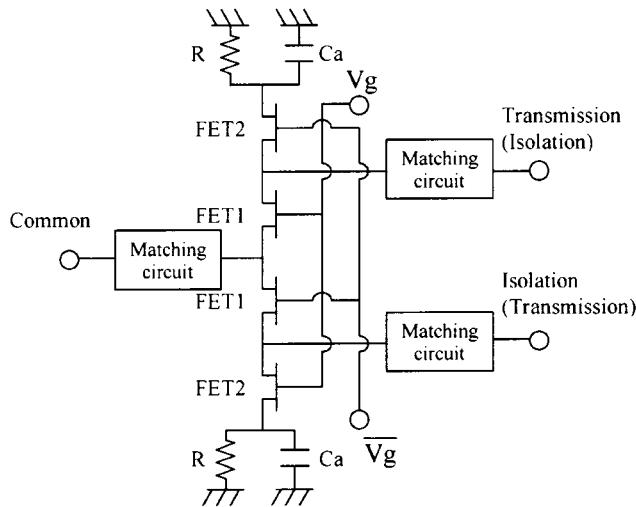
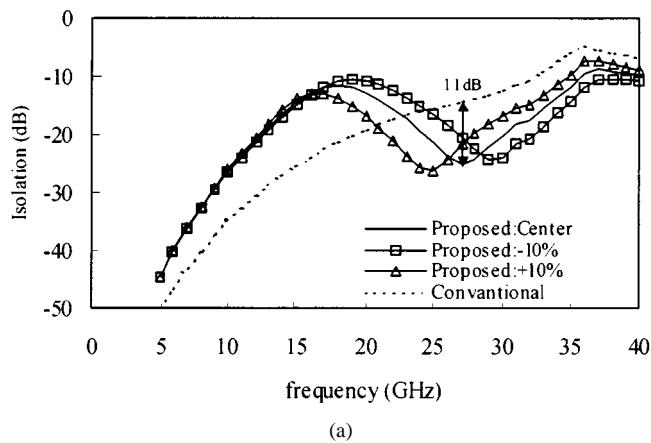
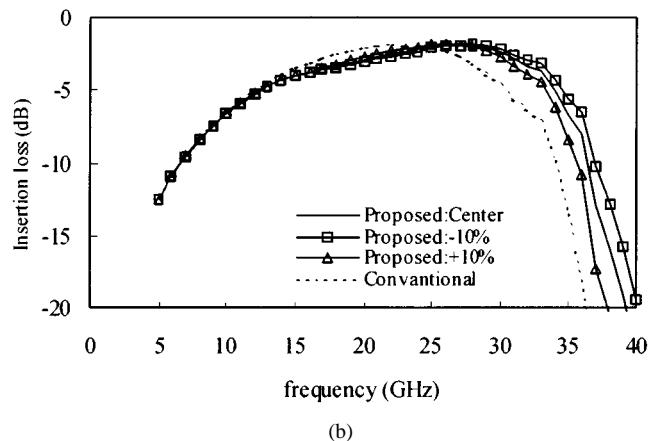
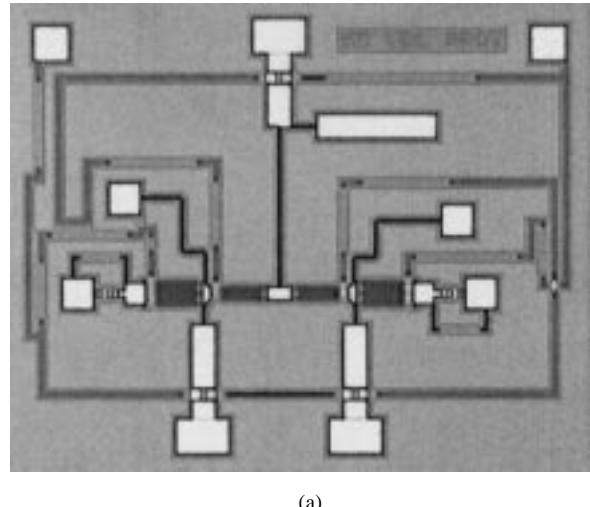




Fig. 7. Schematic diagram of the designed series-shunt FET SPDT switch with capacitors (C_a) canceling the parasitic inductor of the shunt FETs.


(a)

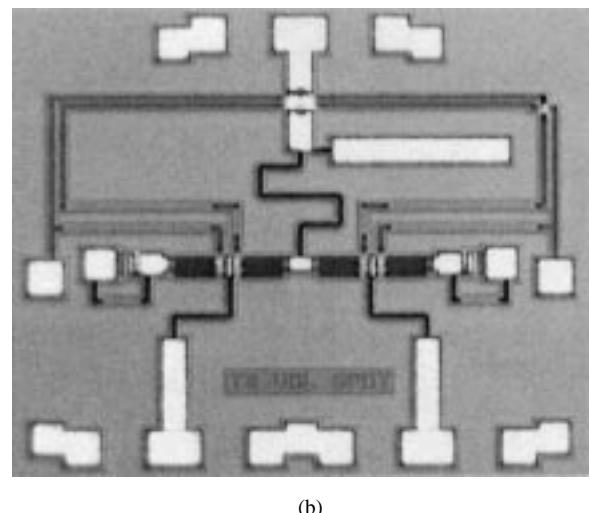

(b)

Fig. 8. Designed and measured characteristics of: (a) isolation and (b) insertion loss for the 28-GHz-band FET SPDT switch with and without capacitors (C_a). The proposed switch is calculated with $\pm 10\%$ shift of metal-insulator-metal (MIM) capacitors.

To cancel out the effect of the parasitic inductor (L_P) of the shunt FET, a capacitor (C_a) is added to the FET in series. The capacitance of the added capacitor C_a should be selected using

(a)

(b)

Fig. 9. FET SPDT switch with capacitors (C_a) designed for the (a) 28- and (b) 18-GHz band. The chip sizes are 1.63 × 1.34 mm.

the following equation:

$$C_a = \frac{1}{\omega_C^2 L_P} \quad (1)$$

where ω_C is a designed center frequency.

Using (1), the capacitor C_a can be determined optimally according to ω_C .

Fig. 3 shows a simplified equivalent circuit of a shunt FET with series capacitor C_a in the "off" state of the switch and calculated isolation characteristics. The values of C_a are designed so as to realize center frequencies of 28 and 18 GHz. The calculated isolation characteristics have demonstrated the same value of 14.2 dB at both designed center frequencies of 28 and 18 GHz.

Fig. 4(a) and (b) shows the simplified equivalent circuit of isolation port and transmission port, respectively, of the proposed series-shunt FET SPDT switch with the capacitor C_a canceling the parasitic inductor L_P of a shunt FET.

The isolation $S_{21\text{off}}$ of the isolation port and the insertion loss $S_{21\text{on}}$ of the transmission port of the proposed series-shunt FET SPDT switch shown in Fig. 4(a) and (b) can be written as

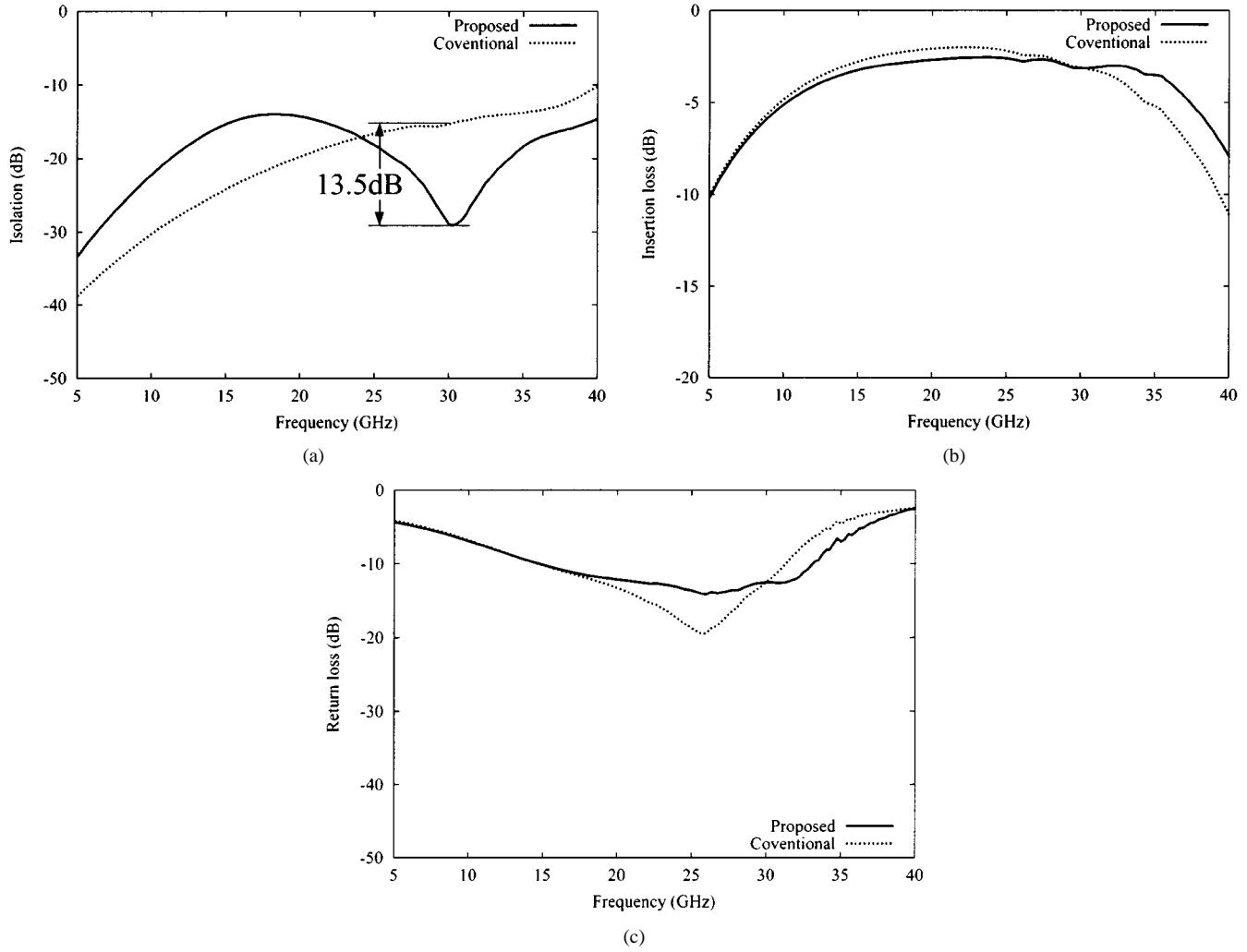


Fig. 10. Measured performances of the 28-GHz-band switch. (a) Isolation. (b) Insertion loss. (c) Input return loss.

follows:

$$\begin{aligned} S_{21\text{off}} &= \frac{2}{2 + (Y_{2\text{off}} + 1)(2Z_{1\text{off}} + 1)} \\ Z_{1\text{off}} &= \frac{1}{j\omega C_{\text{OFF}1}} + j\omega L_{P1} \end{aligned} \quad (2)$$

$$Y_{2\text{off}} = \frac{1}{R_{\text{ON}2} + j\omega L_{P2} + \frac{1}{j\omega C_a}} \quad (3)$$

$$\begin{aligned} S_{21\text{on}} &= \frac{2}{2 + (Y_{2\text{on}} + 1)(2Z_{1\text{on}} + 1)} \\ Z_{1\text{on}} &= R_{\text{ON}1} + j\omega L_{P1} \\ Y_{2\text{off}} &= \frac{1}{j\omega C_{\text{OFF}2}} + j\omega L_{P2} + \frac{1}{j\omega a} \end{aligned} \quad (3)$$

where $R_{\text{ON}1}$ and $R_{\text{ON}2}$ are the resistance of the series and shunt FET in the “on” state, $C_{\text{OFF}1}$ and $C_{\text{OFF}2}$ are the capacitance of the series and shunt FET in the “off” state, and L_{P1} and L_{P2} are the parasitic inductance of the series and shunt FET, respectively. C_a is also derived from the (1). Let C_a be infinite in (2) and (3). The isolation $\overline{S_{21\text{off}}}$ and insertion loss $\overline{S_{21\text{on}}}$ of the conventional series-shunt FET SPDT switch without C_a are then obtained.

From (2), the following relation between $S_{21\text{off}}$ and $\overline{S_{21\text{off}}}$ is derived:

$$|\overline{S_{21\text{off}}}| > |S_{21\text{off}}|, \quad \text{for } \left(\frac{\omega_C}{\sqrt{2}} < \omega < \infty \right). \quad (4)$$

With the use of the equivalent circuits shown in Fig. 4, the isolations and insertion losses of the switch with C_a and the switch without C_a can be calculated. Fig. 5(a) and (b) shows an example of calculated isolation and insertion loss, respectively, of 28-GHz-band switches with and without C_a . It can be seen that by adding the capacitor C_a , the isolation and insertion loss of the switch are improved around the designed frequency of ω_C .

When the device parameters of $R_{\text{ON}1}$, $R_{\text{ON}2}$, $C_{\text{OFF}1}$, $C_{\text{OFF}2}$, L_{P1} , and L_{P2} for FET1 and FET2 are substituted into (2) and (3), the isolation and insertion loss for the switch can be calculated. Here, the device parameters are tightly related to the gatewidth W_g of the FET as follows:

$$\begin{aligned} C_{\text{off}} &= 1.5 \times 10^{-4} \times W_{g(\mu\text{m})} \text{ pF} \\ L_P &= \frac{30}{W_{g(\mu\text{m})}} \text{ nH} \\ R_{\text{ON}} &= \frac{1800}{W_{g(\mu\text{m})}} \Omega. \end{aligned} \quad (5)$$

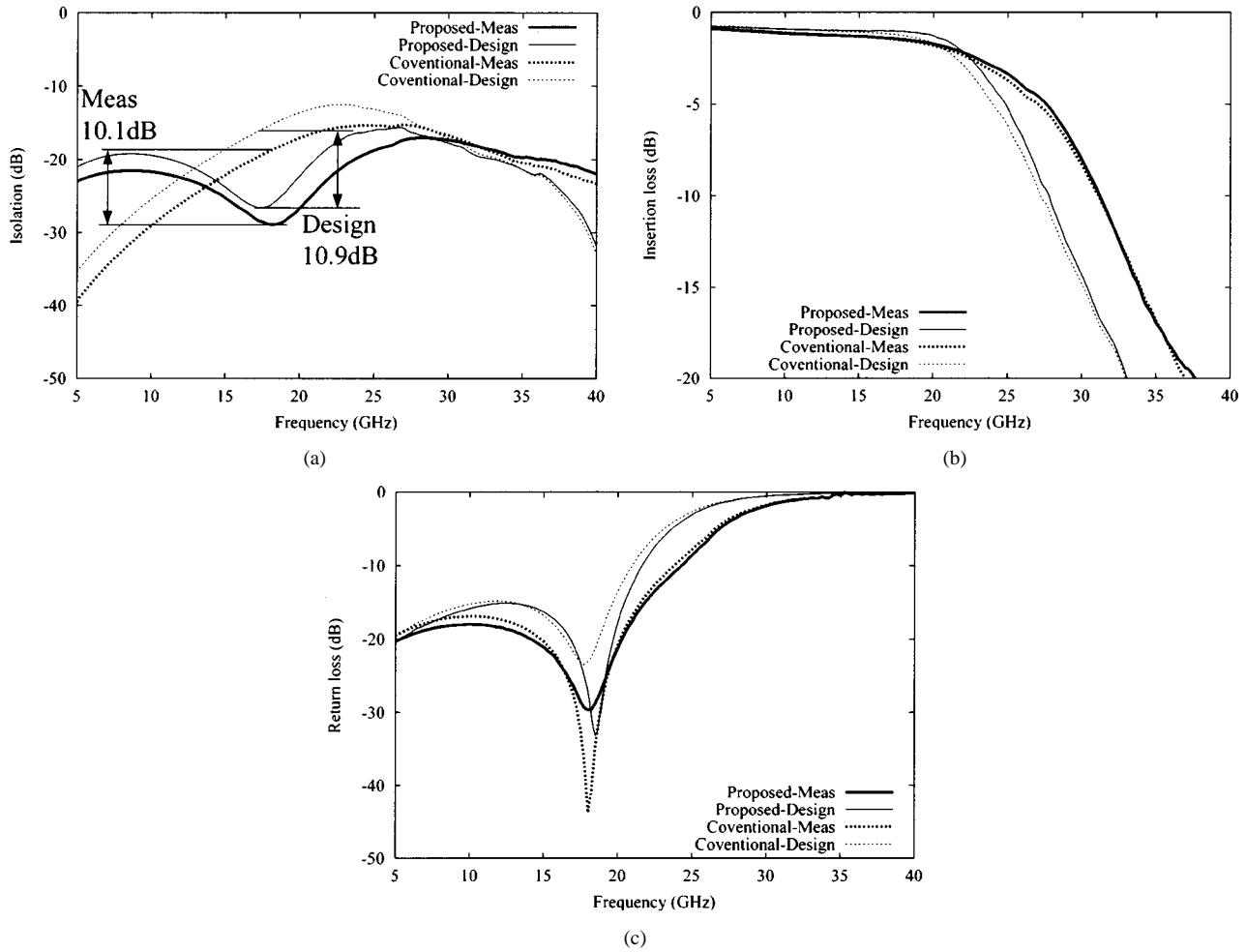


Fig. 11. Designed and measured performances of the 18-GHz-band switches. (a) Isolation. (b) Insertion loss. (c) Input return loss.

Fig. 6 shows the calculated contour maps for isolation and insertion loss of the proposed series-shunt FET SPDT switch with capacitors (C_a) canceling the parasitic inductor of the shunt FETs, which are calculated at 28 GHz. From this figure, it is shown that there exists an optimum pair of the FETs' gatewidth of W_{g1} and W_{g2} for the isolation and insertion-loss characteristics and that the characteristics of the isolation and insertion loss should be traded off.

III. CIRCUIT DESIGN

We have designed the proposed FET SPDT switches for two frequency bands of 28 and 18 GHz. Fig. 7 shows the schematic diagram of the switch. To make a dc return path, R is added in parallel with C_a . In the design procedure, we realize the practical FET model in which all device parameters are related to the gatewidth. Starting from the initial value of W_{g1} and W_{g2} determined by the result of Fig. 6, and utilizing the above-mentioned FET model, we obtain optimized gatewidths.

Fig. 8(a) and (b) shows the isolation and insertion-loss characteristics, respectively, for the 28-GHz-band FET SPDT switch with C_a and without C_a . The gatewidth W_{g1} and W_{g2} are 200 and 400 μm , respectively. The calculated isolation of 24 dB and the insertion loss of 1.9 dB are obtained at 28 GHz for the proposed switch. It is also shown that the isolation and insertion

loss of the proposed switch are improved by 11 and 1.1 dB, respectively. For a process with 20% capacitance tolerance, the resonant frequency will shift by $\pm 10\%$. This causes the 11-dB isolation improvement of the center condition to be reduced to 7 dB. Those are better than the conventional ones at the designed frequency of 28 GHz. It is shown that above the frequency of 22.7 GHz, which corresponds to $\omega_C/\sqrt{2}$, the isolation of the proposed switch is better than that of the conventional one.

IV. EXPERIMENTAL RESULTS

Fig. 9(a) and (b) shows the FET SPDT switch with C_a designed for the 28- and 18-GHz band, respectively. These chip sizes are $1.63 \times 1.34 \text{ mm}$.

Fig. 10(a)–(c) presents the measured results of the isolation, insertion loss, and return loss, respectively, of the proposed FET SPDT switch with C_a for the 28-GHz band. The switch has demonstrated isolation of 28.9 dB, insertion loss of 3.1 dB, and return loss of 12.5 dB. The isolation is improved by 13.5 dB compared to the conventional ones. Insertion and return losses are almost the same as the conventional ones.

Fig. 11(a)–(c) shows the designed and measured results of the isolation, insertion loss, and return loss, respectively, of the SPDT switch with C_a and without C_a for the 18-GHz band. The gatewidth W_{g1} and W_{g2} are 300 μm . The designed isolation of

26 dB and the insertion loss of 1.0 dB are obtained at 18 GHz for the proposed switch. The switch has demonstrated isolation of 28.9 dB, insertion loss of 1.5 dB, and return loss of 29.6 dB. The designed isolation is improved by 10.9 dB compared to the conventional switch. The measured isolation is also improved by 10.1 dB. Insertion and return loss are almost the same as the conventional ones. From these results, proposed circuit topologies were utilized to realize with high isolation.

V. CONCLUSIONS

To achieve high isolation operating in high frequency and a small switch, the series-shunt FET switches with a capacitor canceling parasitic inductance of FET in 28 and 18 GHz have been developed. The isolations are 28.9 dB for both the 28- and 18-GHz FET SPDT switches, respectively. These results have demonstrated that the proposed series-shunt FET SPDT switches with a capacitor canceling FET parasitic inductance would be useful for the operation in millimeter-wave applications.

REFERENCES

- [1] B. E. Bedard, A. D. Barlas, and R. B. Gold, "A high performance monolithic GaAs SPDT switch," in *15th EuMC Dig.*, 1985, pp. 936-939.
- [2] P. O'Sullivan, G. St. Onge, E. Heaney, F. McGrath, and C. Kemarrec, "High performance integrated PA, T/R switch for 1.9 GHz personal communication handsets," in *IEEE GaAs IC Symp. Dig.*, 1993, pp. 33-35.
- [3] K. Kawakyu, Y. Ikeda, and M. Nagaoka *et al.*, "A novel resonant-type GaAs SPDT switch IC with low distortion characteristics for 1.9 GHz personal handy-phone system," in *IEEE MTT-S Int. Microwave Symp. Dig.*, 1996, pp. 647-650.
- [4] H. Uda, T. Sawai, T. Yamada, K. Nogawa, and Y. Harada, "High-performance GaAs switch IC's fabricated using MESFET's with two kinds of pinch-off voltages," in *IEEE GaAs IC Symp. Dig.*, 1993, pp. 247-250.
- [5] T. Tokumitsu, I. Toyoda, and M. Aikawa, "Low voltage, high power T/R switch MMIC using LC resonators," in *IEEE Microwave Millimeter-Wave Monolithic Circuits Symp. Dig.*, 1993, pp. 27-30.

Morishige Hieda (M'94) was born in Toyoma, Japan. He received the B.E. and M.E. degrees in electronic engineering from Tohoku University, Sendai, Japan, in 1988 and 1990, respectively.

In 1990, he joined the Information Technology Research and Development Center, Mitsubishi Electric Corporation, Kamakura, Japan, where he has been engaged in research and development of millimeter-wave mixers, microwave control circuits, and MMICs.

Mr. Hieda is a member of the Institute of Electronics, Information and Communication Engineers (IEICE), Japan.

Kazuhiko Nakahara (M'01) received the B.S. and Ph.D. degrees in electronics from Hokkaido University, Sapporo, Japan, in 1983 and 2001, respectively.

In 1983, he joined the Mitsubishi Electric Corporation, Kamakura, Japan, where he was engaged in research and development of microwave ICs and MMICs. He is currently with Kamakura Works, Mitsubishi Electric Corporation, Kamakura, Japan.

Dr. Nakahara is a member of the Institute of Electronics, Information and Communication Engineers (IEICE), Japan.

(IEICE), Japan.

Kenichi Miyaguchi (M'00) received the B.E. and M.E. degrees in electrical and electronic engineering from Kyoto University, Kyoto, Japan, in 1997 and 1999, respectively.

In 1999, he joined the Information Technology Research and Development Center, Mitsubishi Electric Corporation, Kamakura, Japan, where he has been engaged in research and development of microwave control circuits and MMICs.

Mr. Miyaguchi is a member of the Institute of Electronics, Information and Communication Engineers

Hitoshi Kurusu received the B.E. and M.E. degrees in electrical and electronic engineering from Kyoto University, Kyoto, Japan, in 1994 and 1996, respectively.

In 1996, he joined the High Frequency and Optical Semiconductor Division, Mitsubishi Electric Corporation, Itami, Japan, where he has been engaged in research and development of microwave control circuits and MMICs.

Yoshitada Iyama (M'94) was born in Toyama, Japan, on October 24, 1955. He received the B.S., M.S., and Dr.Eng. degrees in electronic engineering from Tohoku University, Sendai, Japan, in 1978, 1980, and 1997, respectively.

In 1980, he joined Kamakura Works, Mitsubishi Electric Corporation, Kamakura, Japan, where he has been engaged in research and development of microwave control circuits and MMICs.

Tadashi Takagi (M'92) received the B.S. degree in physics from the Tokyo Institute of Technology, Tokyo, Japan, in 1973, and Ph.D. degree in electronic engineering from Shizuoka University, Sizuoka, Japan, in 1995.

In 1973, he joined the Mitsubishi Electric Corporation, Kamakura, Japan, where he was engaged in research and development of microwave circuits and MMICs and solid-state power amplifiers (SSPAs). He is currently the Project Manager of the Microwave Prototyping Project Group, Information Technology Research and Development Center, Mitsubishi Electric Corporation.

Dr. Takagi is a member of the Institute of Electronics, Information and Communication Engineers (IEICE), Japan.

Shuji Urasaki (M'82-SM'94) received the B.S., M.S., and Ph.D. degrees in electronic engineering from Hokkaido University, Sapporo, Japan, in 1967, 1969, and 1985, respectively.

In 1969, he joined the Mitsubishi Electric Corporation, Tokyo, Japan, where he was involved with antennas for public communications, satellite communications, and radar systems. He is currently the General Manager of the Electro-Optics and Microwave Systems Laboratory, Information Technology Research and Development Center, Mitsubishi Electric Corporation, Kamakura, Japan.

Dr. Urasaki is a member of the Institute of Electronics, Information and Communication Engineers (IEICE), Japan.